Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Cell Genom ; 4(4): 100536, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38604126

ABSTRACT

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using assay for transposase-accessible chromatin coupled to self-transcribing active regulatory region (ATAC-STARR) sequencing. In addition to thousands of cis changes, we discover an unexpected number (∼10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie ∼37% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-in regulatory differences between species.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Animals , Humans , Macaca mulatta/genetics , Regulatory Sequences, Nucleic Acid/genetics , Gene Expression Regulation/genetics , Transcription Factors/genetics , Chromatin/genetics
2.
Res Sq ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38496675

ABSTRACT

Endocrine islet b cells comprise heterogenous cell subsets. Yet when/how these subsets are produced and how stable they are remain unknown. Addressing these questions is important for preventing/curing diabetes, because lower numbers of b cells with better secretory function is a high risk of this disease. Using combinatorial cell lineage tracing, scRNA-seq, and DNA methylation analysis, we show here that embryonic islet progenitors with distinct gene expression and DNA methylation produce b-cell subtypes of different function and viability in adult mice. The subtype with better function is enriched for genes involved in vesicular production/trafficking, stress response, and Ca2+-secretion coupling, which further correspond to differential DNA methylation in putative enhancers of these genes. Maternal overnutrition, a major diabetes risk factor, reduces the proportion of endocrine progenitors of the b-cell subtype with better-function via deregulating DNA methyl transferase 3a. Intriguingly, the gene signature that defines mouse b-cell subtypes can reliably divide human cells into two sub-populations while the proportion of b cells with better-function is reduced in diabetic donors. The implication of these results is that modulating DNA methylation in islet progenitors using maternal food supplements can be explored to improve b-cell function in the prevention and therapy of diabetes.

3.
Cell Rep ; 43(3): 113888, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416644

ABSTRACT

Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/physiology , Genome-Wide Association Study , Antigens, Viral/genetics , Antigens, Viral/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation , Virus Latency
4.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260414

ABSTRACT

Background: Recent advancements in high-throughput genomics and targeted therapies have provided tremendous potential to identify and therapeutically target distinct mutations associated with cancers. However, to date the majority of targeted therapies are used to treat all functional mutations within the same gene, regardless of affected codon or phenotype. Results: In this study, we developed a functional genomic analysis workflow with a unique isogenic cell line panel bearing two distinct hotspot PIK3CA mutations, E545K and H1047R, to accurately identify targetable differences between mutations within the same gene. We performed RNA-seq and ATAC-seq and identified distinct transcriptomic and epigenomic differences associated with each PIK3CA hotspot mutation. We used this data to curate a select CRISPR knock out screen to identify mutation-specific gene pathway vulnerabilities. These data revealed AREG as a E545K-preferential target that was further validated through in vitro analysis and publicly available patient databases. Conclusions: Using our multi-modal genomics framework, we discover distinct differences in genomic regulation between PIK3CA hotspot mutations, suggesting the PIK3CA mutations have different regulatory effects on the function and downstream signaling of the PI3K complex. Our results demonstrate the potential to rapidly uncover mutation specific molecular targets, specifically AREG and a proximal gene regulatory region, that may provide clinically relevant therapeutic targets. The methods outlined provide investigators with an integrative strategy to identify mutation-specific targets for the treatment of other oncogenic mutations in an isogenic system.

5.
BMC Genomics ; 24(1): 623, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858046

ABSTRACT

BACKGROUND: Establishment of DNA methylation (DNAme) patterns is essential for balanced multi-lineage cellular differentiation, but exactly how these patterns drive cellular phenotypes is unclear. While > 80% of CpG sites are stably methylated, tens of thousands of discrete CpG loci form hypomethylated regions (HMRs). Because they lack DNAme, HMRs are considered transcriptionally permissive, but not all HMRs actively regulate genes. Unlike promoter HMRs, a subset of non-coding HMRs is cell type-specific and enriched for tissue-specific gene regulatory functions. Our data further argues not only that HMR establishment is an important step in enforcing cell identity, but also that cross-cell type and spatial HMR patterns are functionally informative of gene regulation. RESULTS: To understand the significance of non-coding HMRs, we systematically dissected HMR patterns across diverse human cell types and developmental timepoints, including embryonic, fetal, and adult tissues. Unsupervised clustering of 126,104 distinct HMRs revealed that levels of HMR specificity reflects a developmental hierarchy supported by enrichment of stage-specific transcription factors and gene ontologies. Using a pseudo-time course of development from embryonic stem cells to adult stem and mature hematopoietic cells, we find that most HMRs observed in differentiated cells (~ 60%) are established at early developmental stages and accumulate as development progresses. HMRs that arise during differentiation frequently (~ 35%) establish near existing HMRs (≤ 6 kb away), leading to the formation of HMR clusters associated with stronger enhancer activity. Using SNP-based partitioned heritability from GWAS summary statistics across diverse traits and clinical lab values, we discovered that genetic contribution to trait heritability is enriched within HMRs. Moreover, the contribution of heritability to cell-relevant traits increases with both increasing HMR specificity and HMR clustering, supporting the role of distinct HMR subsets in regulating normal cell function. CONCLUSIONS: Our results demonstrate that the entire HMR repertoire within a cell-type, rather than just the cell type-specific HMRs, stores information that is key to understanding and predicting cellular phenotypes. Ultimately, these data provide novel insights into how DNA hypo-methylation provides genetically distinct historical records of a cell's journey through development, highlighting HMRs as functionally distinct from other epigenomic annotations.


Subject(s)
DNA Methylation , Gene Expression Regulation , Adult , Humans , Promoter Regions, Genetic , Cell Differentiation/genetics , DNA , CpG Islands
6.
Sci Rep ; 13(1): 9193, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37280306

ABSTRACT

The integrated stress response (ISR)-activated transcription factors ATF4 and CHOP/DDIT3 may regulate oligodendrocyte (OL) survival, tissue damage and functional impairment/recovery in white matter pathologies, including traumatic spinal cord injury (SCI). Accordingly, in OLs of OL-specific RiboTag mice, Atf4, Chop/Ddit3 and their downstream target gene transcripts were acutely upregulated at 2, but not 10, days post-contusive T9 SCI coinciding with maximal loss of spinal cord tissue. Unexpectedly, another, OL-specific upregulation of Atf4/Chop followed at 42 days post-injury. However, wild type versus OL-specific Atf4-/- or Chop-/- mice showed similar white matter sparing and OL loss at the injury epicenter, as well as unaffected hindlimb function recovery as determined by the Basso mouse scale. In contrast, the horizontal ladder test revealed persistent worsening or improvement of fine locomotor control in OL-Atf4-/- or OL-Chop-/- mice, respectively. Moreover, chronically, OL-Atf-/- mice showed decreased walking speed during plantar stepping despite greater compensatory forelimb usage. Therefore, ATF4 supports, while CHOP antagonizes, fine locomotor control during post-SCI recovery. No correlation between those effects and white matter sparing together with chronic activation of the OL ISR suggest that in OLs, ATF4 and CHOP regulate function of spinal cord circuitries that mediate fine locomotor control during post-SCI recovery.


Subject(s)
Contusions , Spinal Cord Injuries , Animals , Mice , Contusions/pathology , Oligodendroglia/pathology , Recovery of Function/physiology , Spinal Cord/pathology , Transcription Factor CHOP/genetics , Transcription Factors
7.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824965

ABSTRACT

Gene regulatory divergence between species can result from cis-acting local changes to regulatory element DNA sequences or global trans-acting changes to the regulatory environment. Understanding how these mechanisms drive regulatory evolution has been limited by challenges in identifying trans-acting changes. We present a comprehensive approach to directly identify cis- and trans-divergent regulatory elements between human and rhesus macaque lymphoblastoid cells using ATAC-STARR-seq. In addition to thousands of cis changes, we discover an unexpected number (~10,000) of trans changes and show that cis and trans elements exhibit distinct patterns of sequence divergence and function. We further identify differentially expressed transcription factors that underlie >50% of trans differences and trace how cis changes can produce cascades of trans changes. Overall, we find that most divergent elements (67%) experienced changes in both cis and trans, revealing a substantial role for trans divergence-alone and together with cis changes-to regulatory differences between species.

8.
Mol Cell ; 83(4): 507-522.e6, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36630954

ABSTRACT

Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , DNA Repair , Nucleosomes , Humans , Adenosine Triphosphatases/genetics , Cell Line , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Histones/genetics , Histones/metabolism , Nucleosomes/genetics
9.
J Immunother Cancer ; 11(11)2023 11 20.
Article in English | MEDLINE | ID: mdl-38315170

ABSTRACT

BACKGROUND: Despite the remarkable success of immunotherapy in treating melanoma, understanding of the underlying mechanisms of resistance remains limited. Emerging evidence suggests that upregulation of tumor-specific major histocompatibility complex-II (tsMHC-II) serves as a predictive marker for the response to anti-programmed death-1 (PD-1)/programmed death ligand 1 (PD-L1) therapy in various cancer types. The genetic and epigenetic pathways modulating tsMHC-II expression remain incompletely characterized. Here, we provide evidence that polycomb repressive complex 2 (PRC2)/EZH2 signaling and resulting H3K27 hypermethylation suppresses tsMHC-II. METHODS: RNA sequencing data from tumor biopsies from patients with cutaneous melanoma treated with or without anti-PD-1, targeted inhibition assays, and assays for transposase-accessible chromatin with sequencing were used to observe the relationship between EZH2 inhibition and interferon (IFN)-γ inducibility within the MHC-II pathway. RESULTS: We find that increased EZH2 pathway messenger RNA (mRNA) expression correlates with reduced mRNA expression of both presentation and T-cell genes. Notably, targeted inhibition assays revealed that inhibition of EZH2 influences the expression dynamics and inducibility of the MHC-II pathway following IFN-γ stimulation. Additionally, our analysis of patients with metastatic melanoma revealed a significant inverse association between PRC2-related gene expression and response to anti-PD-1 therapy. CONCLUSIONS: Collectively, our findings demonstrate that EZH2 inhibition leads to enhanced MHC-II expression potentially resulting from improved chromatin accessibility at CIITA, the master regulator of MHC-II. These insights shed light on the molecular mechanisms involved in tsMHC-II suppression and highlight the potential of targeting EZH2 as a therapeutic strategy to improve immunotherapy efficacy.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Interferons/pharmacology , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Histocompatibility Antigens , Chromatin , RNA, Messenger/genetics
10.
Genome Res ; 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35858748

ABSTRACT

Massively parallel reporter assays (MPRAs) test the capacity of putative gene regulatory elements to drive transcription on a genome-wide scale. Most gene regulatory activity occurs within accessible chromatin, and recently described methods have combined assays that capture these regions, such as assay for transposase-accessible chromatin using sequencing (ATAC-seq), with self-transcribing active regulatory region sequencing (STARR-seq) to selectively assay the regulatory potential of accessible DNA (ATAC-STARR-seq). Here, we report an integrated approach that quantifies activating and silencing regulatory activity, chromatin accessibility, and transcription factor (TF) occupancy with one assay using ATAC-STARR-seq. Our strategy, including important updates to the ATAC-STARR-seq assay and workflow, enabled high-resolution testing of ~50 million unique DNA fragments tiling ~101,000 accessible chromatin regions in human lymphoblastoid cells. We discovered that 30% of all accessible regions contain an activator, a silencer or both. Although few MPRA studies have explored silencing activity, we demonstrate silencers occur at similar frequencies to activators, and they represent a distinct functional group enriched for unique TF motifs and repressive histone modifications. We further show that Tn5 cut-site frequencies are retained in the ATAC-STARR plasmid library compared to standard ATAC-seq, enabling TF occupancy to be ascertained from ATAC-STARR data. With this approach, we found that activators and silencers cluster by distinct TF footprint combinations and these groups of activity represent different gene regulatory networks of immune cell function. Altogether, these data highlight the multi-layered capabilities of ATAC-STARR-seq to comprehensively investigate the regulatory landscape of the human genome all from a single DNA fragment source.

11.
Exp Neurol ; 353: 114080, 2022 07.
Article in English | MEDLINE | ID: mdl-35405120

ABSTRACT

A wide range of physiological processes show circadian oscillations that are critical for organismal homeostasis. Consequently, disruption of such rhythmicity contributes to the pathogenesis of various chronic diseases. The occurrence, severity, and resolution of acute injuries to the central nervous system may also be modulated by circadian rhythms and/or anti-rhythmic disruptions. Mechanistically, circadian rhythmicity originates from the intrinsic circadian activity of the clock pathway transcription factors that regulate gene expression in a cycle of about 24 h. In addition, their activity is synchronized by external time cues including light, sleep or feeding to produce diurnal rhythms of 24 h. The pathogenic significance of circadian rhythms can be tested experimentally by determining the effects of (i) natural diurnal/circadian time, (ii) time cue manipulations that perturb the rhythmicity, (iii) drugs that target the clock pathway, and (iv) genetic manipulations to inactivate key mediators of the clock pathway. This review summarizes emerging evidence from all those strategies that supports a role of circadian and/or diurnal rhythms in rodent models of stroke, traumatic brain or spinal cord injury, status epilepticus and encephalomyelitis. Potential clinical implications are also considered, including pathogenic effects of the chronodisruptive environment or time of day variability in response to therapeutic interventions. Well-controlled animal studies avoid effects of confounding factors that may complicate interpretation of epidemiological data. They can also help to identify mechanisms that mediate the circadian modulation of a CNS pathology.


Subject(s)
Circadian Clocks , Circadian Rhythm , Animals , Brain , Circadian Clocks/genetics , Circadian Rhythm/physiology , Homeostasis , Sleep , Transcription Factors
12.
Cancer Discov ; 12(2): 450-467, 2022 02.
Article in English | MEDLINE | ID: mdl-34531253

ABSTRACT

An enhanced requirement for nutrients is a hallmark property of cancer cells. Here, we optimized an in vivo genetic screening strategy in acute myeloid leukemia (AML), which led to the identification of the myo-inositol transporter SLC5A3 as a dependency in this disease. We demonstrate that SLC5A3 is essential to support a myo-inositol auxotrophy in AML. The commonality among SLC5A3-dependent AML lines is the transcriptional silencing of ISYNA1, which encodes the rate-limiting enzyme for myo-inositol biosynthesis, inositol-3-phosphate synthase 1. We use gain- and loss-of-function experiments to reveal a synthetic lethal genetic interaction between ISYNA1 and SLC5A3 in AML, which function redundantly to sustain intracellular myo-inositol. Transcriptional silencing and DNA hypermethylation of ISYNA1 occur in a recurrent manner in human AML patient samples, in association with IDH1/IDH2 and CEBPA mutations. Our findings reveal myo-inositol as a nutrient dependency in AML caused by the aberrant silencing of a biosynthetic enzyme. SIGNIFICANCE: We show how epigenetic silencing can provoke a nutrient dependency in AML by exploiting a synthetic lethality relationship between biosynthesis and transport of myo-inositol. Blocking the function of this solute carrier may have therapeutic potential in an epigenetically defined subset of AML.This article is highlighted in the In This Issue feature, p. 275.


Subject(s)
Heat-Shock Proteins/genetics , Inositol/biosynthesis , Leukemia, Myeloid, Acute/drug therapy , Symporters/genetics , Animals , Developmental Biology , Humans , Mice
13.
PLoS One ; 16(11): e0249981, 2021.
Article in English | MEDLINE | ID: mdl-34813603

ABSTRACT

The circadian gene expression rhythmicity drives diurnal oscillations of physiological processes that may determine the injury response. While outcomes of various acute injuries are affected by the time of day at which the original insult occurred, such influences on recovery after spinal cord injury (SCI) are unknown. We report that mice receiving moderate, T9 contusive SCI at ZT0 (zeitgeber time 0, time of lights on) and ZT12 (time of lights off) showed similar hindlimb function recovery in the Basso mouse scale (BMS) over a 6 week post-injury period. In an independent study, no significant differences in BMS were observed after SCI at ZT18 vs. ZT6. However, the ladder walking test revealed modestly improved performance for ZT18 vs. ZT6 mice at week 6 after injury. Consistent with those minor effects on functional recovery, terminal histological analysis revealed no significant differences in white matter sparing at the injury epicenter. Likewise, blood-spinal cord barrier disruption and neuroinflammation appeared similar when analyzed at 1 week post injury at ZT6 or ZT18. Therefore, locomotor recovery after thoracic contusive SCI is not substantively modulated by the time of day at which the neurotrauma occurred.


Subject(s)
Circadian Rhythm/physiology , Motor Activity/physiology , Recovery of Function/physiology , Spinal Cord Injuries/physiopathology , White Matter/physiopathology , Animals , Female , Hindlimb/physiopathology , Mice
14.
Nat Protoc ; 16(12): 5377-5397, 2021 12.
Article in English | MEDLINE | ID: mdl-34663963

ABSTRACT

The epigenome is multidimensional, with individual molecular components operating on different levels to control transcriptional output. Techniques that combine measurements of these features can reveal their precise correspondence in genomic space, or temporal connectivity, to better understand how they jointly regulate genes. ATAC-Me is an integrated method to probe DNA methylation and chromatin accessibility from a single DNA fragment library. Intact nuclei undergo Tn5 transposition to isolate DNA fragments within nucleosome-free regions. Isolated fragments are exposed to sodium bisulfite before library amplification and sequencing. A typical ATAC-Me experiment detects ~60,000-75,000 peak regions (P < 0.05), covering ~3-4 million CpG sites with at least 5× coverage. These sites display a range of methylation values depending on the cellular and genomic context. The approach is well suited for time course studies that aim to capture chromatin and DNA methylation dynamics in tandem during cellular differentiation. The protocol is completed in 2 d with standard molecular biology equipment and expertise. Analysis of resulting data uses publicly available software requiring basic bioinformatics skills to interpret results.


Subject(s)
Biological Assay , Chromatin/metabolism , Computational Biology/methods , DNA Methylation , DNA/metabolism , Epigenesis, Genetic , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , Cell Differentiation , Cell Line , Cell Line, Tumor , Chromatin/chemistry , CpG Islands , DNA/genetics , DNA Transposable Elements , Gene Library , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/metabolism , Humans , Software , Sulfites/chemistry , THP-1 Cells , Transcription, Genetic , Transposases/genetics , Transposases/metabolism
15.
Cancer Discov ; 11(9): 2300-2315, 2021 09.
Article in English | MEDLINE | ID: mdl-33893150

ABSTRACT

Hundreds of genes become aberrantly silenced in acute myeloid leukemia (AML), with most of these epigenetic changes being of unknown functional consequence. Here, we demonstrate how gene silencing can lead to an acquired dependency on the DNA repair machinery in AML. We make this observation by profiling the essentiality of the ubiquitination machinery in cancer cell lines using domain-focused CRISPR screening, which revealed Fanconi anemia (FA) proteins UBE2T and FANCL as unique dependencies in AML. We demonstrate that these dependencies are due to a synthetic lethal interaction between FA proteins and aldehyde dehydrogenase 2 (ALDH2), which function in parallel pathways to counteract the genotoxicity of endogenous aldehydes. We show DNA hypermethylation and silencing of ALDH2 occur in a recurrent manner in human AML, which is sufficient to confer FA pathway dependency. Our study suggests that targeting of the ubiquitination reaction catalyzed by FA proteins can eliminate ALDH2-deficient AML. SIGNIFICANCE: Aberrant gene silencing is an epigenetic hallmark of human cancer, but the functional consequences of this process are largely unknown. In this study, we show how an epigenetic alteration leads to an actionable dependency on a DNA repair pathway through the disabling of genetic redundancy.This article is highlighted in the In This Issue feature, p. 2113.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Leukemia, Myeloid, Acute/genetics , Cell Line, Tumor , Humans , Ubiquitination
16.
J Intensive Care Soc ; 22(4): 319-327, 2021 Nov.
Article in English | MEDLINE | ID: mdl-35154370

ABSTRACT

BACKGROUND: Using a dextrose-containing solution, instead of normal saline, to maintain the patency of an arterial cannula results in the admixture of glucose in line samples. This can misguide the clinician down an inappropriate treatment pathway for hyperglycaemia. METHODS: Following a near-miss and subsequent educational and training efforts at our institution, we conducted two simulations: (1) to observe whether 20 staff would identify a 5% dextrose/0.9% saline flush solution as the cause for a patient's refractory hyperglycaemia, and (2) to compare different arterial line sampling techniques for glucose contamination. RESULTS: (1) Only 2/20 participants identified the incorrect dextrose-containing flush solution, with the remainder choosing to escalate insulin therapy to levels likely to risk fatality, and (2) glucose contamination occurred regardless of sampling technique. CONCLUSION: Despite national guidance and local educational efforts, this is still an under-recognised error. Operator-focussed preventative strategies have not been effective and an engineered solution is needed.

17.
Nurs Crit Care ; 26(4): 224-233, 2021 07.
Article in English | MEDLINE | ID: mdl-33124119

ABSTRACT

BACKGROUND: Patients who are critically ill are at increased risk of hospital acquired pneumonia and ventilator associated pneumonia. Effective evidence based oral care may reduce the incidence of such iatrogenic infection. AIM: To provide an evidence-based British Association of Critical Care Nurses endorsed consensus paper for best practice relating to implementing oral care, with the intention of promoting patient comfort and reducing hospital acquired pneumonia and ventilator associated pneumonia in critically ill patients. DESIGN: A nominal group technique was adopted. A consensus committee of adult critical care nursing experts from the United Kingdom met in 2018 to evaluate and review the literature relating to oral care, its application in reducing pneumonia in critically ill adults and to make recommendations for practice. An elected national board member for the British Association of Critical Care Nurses chaired the round table discussion. METHODS: The committee focused on 5 aspects of oral care practice relating to critically ill adult patients. The evidence was evaluated for each practice within the context of reducing pneumonia in the mechanically ventilated patient or pneumonia in the non-ventilated patient. The five practices included the frequency for oral care; tools for oral care; oral care technique; solutions used and oral care in the non-ventilated patient who is critically ill and is at risk of aspiration. The group searched the best available evidence and evaluated this using the Grading of Recommendations Assessment, Development, and Evaluation system to assess the quality of evidence from high to very low, and to formulate recommendations as strong, moderate, weak, or best practice consensus statement when applicable. RESULTS: The consensus group generated recommendations, delineating an approach to best practice for oral care in critically ill adult patients. Recommendations included guidance for frequency and procedure for oral assessment, toothbrushing, and moisturising the mouth. Evidence on the use of chlorhexidine is not consistent and caution is advised with its routine use. CONCLUSION: Oral care is an important part of the care of critically ill patients, both ventilated and non-ventilated. An effective oral care programme reduces the incidence of pneumonia and promotes patient comfort. RELEVANCE TO CLINICAL PRACTICE: Effective oral care is integral to safe patient care in critical care.


Subject(s)
Nurses , Pneumonia, Ventilator-Associated , Adult , Consensus , Critical Care , Critical Illness , Humans , Oral Hygiene , Pneumonia, Ventilator-Associated/prevention & control , Respiration, Artificial/adverse effects
18.
Nat Ecol Evol ; 4(10): 1332-1341, 2020 10.
Article in English | MEDLINE | ID: mdl-32719451

ABSTRACT

Neanderthal ancestry remains across modern Eurasian genomes and introgressed sequences influence diverse phenotypes. Here, we demonstrate that introgressed sequences reintroduced thousands of ancestral alleles that were lost in Eurasian populations before introgression. Our simulations and variant effect predictions argue that these reintroduced alleles (RAs) are more likely to be tolerated by modern humans than are introgressed Neanderthal-derived alleles (NDAs) due to their distinct evolutionary histories. Consistent with this, we show enrichment for RAs and depletion for NDAs on introgressed haplotypes with expression quantitative trait loci (eQTL) and phenotype associations. Analysis of available cross-population eQTLs and massively parallel reporter assay data show that RAs commonly influence gene expression independent of linked NDAs. We further validate these independent effects for one RA in vitro. Finally, we demonstrate that NDAs are depleted for regulatory activity compared to RAs, while RAs have activity levels similar to non-introgressed variants. In summary, our study reveals that Neanderthal introgression reintroduced thousands of lost ancestral variants with gene regulatory activity and that these RAs were more tolerated than NDAs. Thus, RAs and their distinct evolutionary histories must be considered when evaluating the effects of introgression.


Subject(s)
Hominidae , Neanderthals , Alleles , Animals , Haplotypes , Humans , Neanderthals/genetics , Population
19.
Mol Cell ; 77(6): 1350-1364.e6, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31999955

ABSTRACT

DNA methylation of enhancers is dynamic, cell-type specific, and vital for cell fate progression. However, current models inadequately define its role within the hierarchy of gene regulation. Analysis of independent datasets shows an unanticipated overlap between DNA methylation and chromatin accessibility at enhancers of steady-state stem cells, suggesting that these two opposing features might exist concurrently. To define their temporal relationship, we developed ATAC-Me, which probes accessibility and methylation from single DNA library preparations. We identified waves of accessibility occurring rapidly across thousands of myeloid enhancers in a monocyte-to-macrophage cell fate model. Prolonged methylation states were observed at a majority of these sites, while transcription of nearby genes tracked closely with accessibility. ATAC-Me uncovers a significant disconnect between chromatin accessibility, DNA methylation status, and gene activity. This unexpected observation highlights the value of ATAC-Me in constructing precise molecular timelines for understanding the role of DNA methylation in gene regulation.


Subject(s)
Cell Differentiation , Cell Lineage , Chromatin/genetics , DNA Methylation , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing/methods , Regulatory Sequences, Nucleic Acid , Binding Sites , Cellular Reprogramming , Gene Regulatory Networks , Humans , Macrophages/cytology , Macrophages/metabolism , Monocytes/cytology , Monocytes/metabolism
20.
Genes Dev ; 33(1-2): 26-48, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30602439

ABSTRACT

Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the "B2" subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Gene Expression Regulation/immunology , Animals , DNA Methylation , Genetic Variation , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...